Mind Network - Samuel Solomon

Statistical Thermodynamics

Listed below are the statistical thermodynamics topics:

Program to be added
Powered by Create your own unique website with customizable templates.
  • Home
  • Quantum Mechanics I
    • Introduction to Waves (The Wave Equation)
    • Introduction to Waves (The Wave Function)
    • Motivation for Quantum Mechanics (Photoelectric effect)
    • Motivation for Quantum Mechanics (Compton Scattering)
    • Motivation for Quantum Mechanics (Black Body Radiation)
    • Bohr Model of the Atom
    • Wave-Particle Duality (The Wave Function Motivation)
    • Problems with the Wave Function
    • Introduction to Quantum Operators (The Formalism)
    • Introduction to Dirac Notation
    • Introduction to Quantum Operators (The Hermitian and the Adjoint)
    • Introduction to Commutation
    • Expectation Values of Operators
    • Quantum Uncertainty (Defining Uncertainty)
    • Quantum Uncertainty (Heisenberg's Uncertainty Principle)
    • The Schrödinger Equation (The "Derivation")
    • The Schrödinger Equation (How to use it)
    • No Degeneracy in 1-Dimension
    • Parity Operator
    • Quantum Mechanics' Core Postulates
    • Free Particle (In a Vacuum)
    • Particle in a Box (Infinite Square Well)
    • Bound States (The Mathematical Setup)
    • Bound States (The Shooting Method)
    • Bound States (Patching Solutions Together)
    • Patching Solutions (Finite, Infinite, and Delta Function Potentials)
    • Delta Function Potential Well
    • Scatter States (A Touch on Dispersion)
    • Scatter States (Reflection, Transmission, Probability Current)
    • Scatter States (Worked Example)
    • Scatter States (Elastic Collision)
    • Quantum Tunneling (Constant Potential)
    • Quantum Tunneling (Changing Potential)
    • Quantum Tunneling (Alpha Decay Example)
    • Quantum Harmonic Oscillator (Classical Mechanics Analogue)
    • Quantum Harmonic Oscillator (Brute Force Solution)
    • Quantum Harmonic Oscillator (Ladder Operators)
    • Quantum Harmonic Oscillator (Expectation Values)
    • Bringing Quantum to 3D (Cartesian Coordinates)
    • Free Particle
    • Infinite Cubic Well (3D Particle in a Box)
    • Quantum Harmonic Oscillator
    • Schrödinger Equation (Spherical Coordinates)
    • Angular Momentum (Experiments)
    • Angular Momentum (Operators)
    • Angular Momentum (Ladder Operators)
    • Schrödinger Equation (Spherical Symmetric Potential)
    • Infinite Spherical Well (Radial Solution)
    • One Electron Atom (Radial Solution for S-orbital)
    • Hydrogen Atom (Angular Solution; Spherically Symmetric)
    • Hydrogen Atom (Radial Solution; Any Orbital)
    • Hydrogen atom (Recap)
  • Quantum Mechanics II
  • Nuclear Fusion
    • Introduction to Fission (Energy Extraction)
    • Introduction to Fusion (Applications and Challenges)
    • Choosing Fusion Reactants
  • Special Relativity
    • Terminology and Notation
    • Galilean Transformation
  • Statistical Thermodynamics
  • Chemical Thermodynamics
  • Ionization Radiation
  • Multivariable Calculus
    • Vectors
    • Dot Product
    • Cross Product
    • Rotating Vectors
    • Level Curves
    • Gradients
    • Directional Derivatives
  • Differential Equations
  • Contact
  • Home
  • Quantum Mechanics I
    • Introduction to Waves (The Wave Equation)
    • Introduction to Waves (The Wave Function)
    • Motivation for Quantum Mechanics (Photoelectric effect)
    • Motivation for Quantum Mechanics (Compton Scattering)
    • Motivation for Quantum Mechanics (Black Body Radiation)
    • Bohr Model of the Atom
    • Wave-Particle Duality (The Wave Function Motivation)
    • Problems with the Wave Function
    • Introduction to Quantum Operators (The Formalism)
    • Introduction to Dirac Notation
    • Introduction to Quantum Operators (The Hermitian and the Adjoint)
    • Introduction to Commutation
    • Expectation Values of Operators
    • Quantum Uncertainty (Defining Uncertainty)
    • Quantum Uncertainty (Heisenberg's Uncertainty Principle)
    • The Schrödinger Equation (The "Derivation")
    • The Schrödinger Equation (How to use it)
    • No Degeneracy in 1-Dimension
    • Parity Operator
    • Quantum Mechanics' Core Postulates
    • Free Particle (In a Vacuum)
    • Particle in a Box (Infinite Square Well)
    • Bound States (The Mathematical Setup)
    • Bound States (The Shooting Method)
    • Bound States (Patching Solutions Together)
    • Patching Solutions (Finite, Infinite, and Delta Function Potentials)
    • Delta Function Potential Well
    • Scatter States (A Touch on Dispersion)
    • Scatter States (Reflection, Transmission, Probability Current)
    • Scatter States (Worked Example)
    • Scatter States (Elastic Collision)
    • Quantum Tunneling (Constant Potential)
    • Quantum Tunneling (Changing Potential)
    • Quantum Tunneling (Alpha Decay Example)
    • Quantum Harmonic Oscillator (Classical Mechanics Analogue)
    • Quantum Harmonic Oscillator (Brute Force Solution)
    • Quantum Harmonic Oscillator (Ladder Operators)
    • Quantum Harmonic Oscillator (Expectation Values)
    • Bringing Quantum to 3D (Cartesian Coordinates)
    • Free Particle
    • Infinite Cubic Well (3D Particle in a Box)
    • Quantum Harmonic Oscillator
    • Schrödinger Equation (Spherical Coordinates)
    • Angular Momentum (Experiments)
    • Angular Momentum (Operators)
    • Angular Momentum (Ladder Operators)
    • Schrödinger Equation (Spherical Symmetric Potential)
    • Infinite Spherical Well (Radial Solution)
    • One Electron Atom (Radial Solution for S-orbital)
    • Hydrogen Atom (Angular Solution; Spherically Symmetric)
    • Hydrogen Atom (Radial Solution; Any Orbital)
    • Hydrogen atom (Recap)
  • Quantum Mechanics II
  • Nuclear Fusion
    • Introduction to Fission (Energy Extraction)
    • Introduction to Fusion (Applications and Challenges)
    • Choosing Fusion Reactants
  • Special Relativity
    • Terminology and Notation
    • Galilean Transformation
  • Statistical Thermodynamics
  • Chemical Thermodynamics
  • Ionization Radiation
  • Multivariable Calculus
    • Vectors
    • Dot Product
    • Cross Product
    • Rotating Vectors
    • Level Curves
    • Gradients
    • Directional Derivatives
  • Differential Equations
  • Contact